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INTRODUCTION

The present study considers both laminar and turbulent flow in curved ducts,

pipes, and channels of constant cross sectional area and shape. The particular flows

considered here, as well as similar flows in related geometries, are very common in

internal flow applications. They are of interest in connection with flow degradation

and their strong influence on flow losses and heat transfer levels.

The general character of flow in curved ducts and pipes is known to differ

fundamentally from that in straight flow geometries, due to the presence of large

secondary flows which distort the primary flow. Since strong deflections may occur

over a short distance, such flows are usually of a transition type and seldom become

fully developed or assume any convenient similarity form. By analogy with external

flows, the flow often behaves as an inviscid flow in a- central core region, with

viscous effects limited to regions near solid boundaries, Unlike most external flow

problems, however, the inviscid core region is often not an irrotational potential

flow but is rotational with interaction between the viscous and rotational inviscid

flow regions. Furthermore, as the flow passes through successive flow passages, new

viscous and thermal boundary layers develop beneath previous boundary layers, and the

distinction between rotational inviscid and viscous boundary layer regions can become

tenuous.

The underlying physical mechanisms present in flows of this type are clearly

elucidated by secondary flow theory (reviewed for example by Horlock & Lakshminarayana [1])...

In its most common and perhaps simplest form, the secondary flow is generated by turning

a primary flow in which viscous or other forces upstream have produced a non-zero

velocity gradient normal to the plane of curvature. Fluid with above (/below) average

momentum migrates to the outside (/inside) of the bend as a result of the radial

pressure gradients produced by turning the flow. This phenomenon is quantified by

secondary flow theory as the generation of streamwise vorticity from transverse

vorticity which has been produced upstream. Although the secondary flow is generated

by an inviscid mechanism, its strength and subsequent development are influenced in

varying degrees by viscous effects. In any event, the secondary flows are often

quite large and the flow patterns are thus complex and highly three-dimensional.

Two-dimensional flows in curved channels do not behave in this manner (provided the

flow remains two-dimensional), since there can be no streamwise vorticity component

in a two-dimensional flow.

" iiili . .. ... ... I III - IIJI -- IlI I1



Previous Work

Much of the early work on flow in curved ducts and pipe bends can be traced

from the reviews of Hawthrone [2, 3]. Of primary interest here are methods for

computing such flows and experimental work which may be useful in evaluating the

numerical predictions. Only three-dimensional developing flows in curved ducts and

pipe bends are considered. Two-dimensional flows and flows which are fully developed

and thus do not vary with an axial coordinate are excluded from consideration.

Flow in Curved Ducts

Pratap and Spalding [4] have considered turbulent flow in a strongly curved duct

using their "partially parabolic" calculation procedure and a two-equation/wall-function

turbulence model. Ghia and Sokhey [5] have computed laminar flow in ducts of strong

curvature using a parabolized form of the Navier-Stokes equations. Kreskovsky, Briley,

and McDonald [6] have recently applied an approximate initial-value analysis for

viscous primary and secondary flows to laminar and turbulent flow in strongly curved

ducts, using a one-equation turbulence model with viscous sublayer resolution.

Humphrey, Taylor and Whitelaw [7] have obtained laser-Doppler anemometry measurements

of laminar flow in a square duct of strong curvature, for the case of fully developed

flow in the straight section upstream of the bend. For comparison, then also performed

numerical calculations for this flow using a version of the fully-elliptic calculation

procedure developed at Imperial College by Gosman, Pun, Patankar and Spalding.

Further extensive calculations including heat transfer effects have been made recently

by Yee and Humphrey [8]. Finally, Taylor, Whitelaw and Yianneskis [9] have recently

made extensive measurements of both laminar and turbulent flow in a strongly curved

square duct with moderately thin boundary layers at the entrance to the bend. The

present study concentrates heavily on numerical solutions of the Navier-Stokes

equations for the flow conditions of these measurements of Taylor, Whitelaw and

* Yianneskis.

Flow in Pipe Bends

Rowe [101 has taken total pressure measurements for turbulent flow in a pipe

bend of small curvature. For comparison, he also performed flow calculations based

on the Squire-Winter inviscid secondary-flow approximation. Patankar, Pratap and

Spalding [11, 12] have performed calculations for both laminar and turbulent flow

in pipe bends of small curvature, using their "parabolic flow" calculation procedure

*and a two-equation/wall-function turbulence model. Agrawal, Talbot and Gong [13]
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have obtained detailed measurements of laminar flow development in 
curved pipes with

uniform velocity at entry. These measurements would be useful for evaluation of

numerical computations.

V'

;i3



THE PRESENT APPROACH

The present objective is to explore and evaluate a method for predicting turbulent

flows in ducts and pipes of strong curvature by numerical solution of the Navier-Stokes

equations. A time-dependent formulation is used as an. iterative means of obtaining

steady solutions, and the compressible form of the equations are solved in the low

Mach number regime (M & 0.05), which closely approximates an incompressible flow.

The governing equations are solved using a consistently-split linearized block

implicit (LBI) scheme developed by Briley and McDonald [14, 15]. With proper treatment

of boundary conditions, this algorithm provides rapid convergence which is not signifi-

cantly degraded by the extreme local mesh resolution which is necessary for the near-

wall sublayer region in turbulent flows. The turbulence model used is a one-equation

model recently explored by Shamroth and Gibeling [15]. This model requires solution

of a single equation governing turbulence kinetic energy q , in conjunction with an

algebraically specified length scale. The turbulent effective viscosity v t is obtained

from the Prandtl-Kolomogorov constitutive relationship pt f
i (q2)112. The model also

- t includes representation of the influence of turbulence Reynolds number on turbulent

stress levels and provides for resolution of the near-wall viscous sublayer region.

The present effort concentrates on the geometry and flow conditions for which

detailed measurements have been obtained recently by Taylor, Whitelaw, and Yianneskis [9].

This geometry is shown to scale in Fig. 1 and consists of a square duct with a 90 degree

circular arc bend and with straight sections both upstream and downstream of the bend.

The ratio of bend radius R to duct width W is 2.3. The measurements were taken for

Reynolds numbers based on mean velocity and duct width of 790 (laminar flow) and

40,000 (turbulent flow). In each case, moderately thin shear layers (20 - 30% of

duct width) were present at the start of the bend. The present study considers both

of these measured flows and in addition the corresponding two-dimensional channel

flows having the same Reynolds numbers, shear layer thickness and ratio ofbend

radius to duct width. The two-dimensional channel flows are computed to establish

their flow structure for comparison with the three-dimensional duct flow solutions.

Test calculations are performed to establish grid independence and to verify the

treatment of inflow/outflow conditions for the two-dimensional channel flows.

The laminar and turbulent duct flow solutions are compared with the flow measurements

and with the channel flow results to provide an evaluation of the flow predictions

obtained by the present computational procedure. Finally, turbulent flow in a curved

pipe with radius ratio of 24 and Reynolds number of 2.36 x 105 is computed and

compared with the measurements of Rowe [101.
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Coordinate System
I

The compressible Navier-Stokes equations in general orthogonal coordinates are

solved using analytical coordinate data for a system of coordinates aligned with the

duct geometry. The coordinate system is shown in Fig. 2 and consists of an axial

coordinate x, parallel to a curved duct centerline (which lies in the Cartesian x-y

plane), and general orthogonal coordinates x2, x3 in transverse planes normal to the

centerline. If the axial coordinate x1 denotes distance along the centerline and if

K(xI) I/R(xI) is the centerline curvature, then the metric scale factor h1 for the

axial coordinate direction is given by hI M 1 + K(x1 ) AR(x2, x3), where AR B r-R is

independent of xI. The transverse metric factors are given by h2 = h3 = 1 for

rectangular (Cartesian) cross sections and by h2 = 1, h3 = x2 for circular (polar)

cross sections. The quantity AR is given by AR = x3 and AR - x2 cos x3 for Cartesian

and polar cross sections, respectively. The centerline curvature K is discontinuous

when a straight segment of a duct joins a constant radius segment. To remove the

associated coordinate singularity, the flow geometry is smoothed over an axial

distance of one duct diameter. This is accomplished using a cubic polynomial varia-

tion in K which matches both function value and slope of K at the end points of the

smoothing region.

Boundary and Initial Conditions

The computational domain is chosen to be a region in the immediate vicinity of

the duct bend (cf. Fig. 1) embedded within a larger overall flow system upstream and

downstream of the bend. This choice of computational domain requires inflow and

outflow boundary conditions which adequately model the interface between the computed

flow and the remainder of the flow system. The inflow/outflow conditions used are

derived from an assumed flow structure and are chosen to provide:

(a) inflow with prescribed stagnation pressure and temperature in an

inviscid core region, and with a given axial velocity profile shape in

shear layers, and

(b) outflow with a prescribed static pressure distribution.

These boundary conditions are chosen following consideration both of a one-dimensional

inviscid characteristics analysis and of the physical process by which many duct flows

are established. For subsonic flow, a characteristics analysis of the one-dimensional

inviscid Euler equations indicates that two boundary conditions are required at an
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inflow boundary and one additional boundary condition is required at outflow. Physically,

a duct flow is often established by supplying air of a given stagnation pressure and

temperature and exhausting the duct at a given static pressure. The mass flux thrgugh

the duct may then vary with time until a steady state is achieved, at which the mass

flux is determined as a balance between these inflow/outflow quantities and viscous

and thermal effects within the duct. By choosing stagnation pressure and temperature

at inflow and static pressure at outflow as the dominant boundary conditions, the

present solution procedure allows both velocity and density to vary with time, as is

consistent with this physical process. As a consequence, pressure waves can be trans-

mitted through the inflow boundary during the transient flow process and are not

reflected back into the computational domain. The reflection of pressure waves at

an inflow boundary where velocity and density are fixed in time has often been cited

as a cause of either instability or slow convergence in other investigations. The

specific treatment of initial and boundary conditions used here is outlined below.

The initial and boundary conditions-are devised from estimates of the potential

flow velocity UI (xl, x2, x3) for the duct, a mean boundary layer thickness 6(xI) for

shear layers on transverse duct walls, and finally from an estimate of the blockage

correction factor B(xl) for the core flow velocity due to the boundary layer growth.

The potential flow velocity is approximated as uniform flow in straight segments of

the duct and as proportional to r in curved segments. The constants (R -R')/Zn(R /Ri)
2 2 2 o 1 0

and R0 /2 (R- R _R 2) lead to a unit mass flux for rectangular and circular cross0
sections, respectively. Here, Ri and R are the radii to the inner and outpr walls of

the duct, and R = (Ri + Ro)/2 as in Fig. 1. Distributions of 6(x1 ) and B(x1 ) are

determined by recourse to a simple one-dimensional momentum integral analysis using a

fixed velocity profile shape and an approximate relationship between B and mean

displacement thickness 6*(xI). Details of this procedure are not important, as the

results serve mainly as a convenient method of setting approximate initial conditions.

Finally, a shear layer velocity profile shape f(y/6), osfsl is chosen for each problem,

where y is a parameter indicative of distance from a wall. The initial values of

velocity components u., u2, u3 are given by

u B(x1 ) ffy/6(x)] u2 - u3  0 (1)
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A reasonably accurate estimate for the pressure drop which will produce the desired

flow rate must be made using any convenient source, such as a Moody diagram, data

correlations, momentum integral analysis, or other computed results. A smooth axial

distribution of pressure which matches this pressure drop is then assigned and

adjusted to approximate local curvature of the flow geometry. This completes speci-

fication of the initial conditions. It is noted that although these initial conditions

do take into account several relevant features of the flow, the important effects of

strong secondary flows and their distori ion of the primary flow are completely

neglected. The resulting initial flow is thus a simple but relatively crude approxi-

mation to the final flow field.

At the inflow boundary, a "two-layer" boundary condition is devised such that

stagnation pressure pis fixed in the core flow region and an axial velocity profile

shape ul1/U e = f(y/6) is set within shear layers. Here, u e is the local edge velocity

which varies with time and is adjusted after each time step to the value consistent

with p and the local edge static pressure determined as part of the solpition. The

remaining inflow conditions are a2 u /an2 = a2 u /an 0 and a2 c /an = g (X2  x3)

where n denotes the normal coordinate direction and c is pressure coefficient. The
p 2

quantity g is computed from the initial conditions with c defined as l-(BU ),its
pI

value from the potential flow corrected for estimated blockage. For outflow condi-

tions, the static pressure is imposed, and second normal derivatives of each velocity

component are set to zero. At no-slip walls, all velocity components are set /to zero,

and the remaining condition used is ap/an = 0, where p is pressure. The condition

ap/an = 0 at a no-slip surface approximates the normal momentum equation to order Re-
1

for viscous flow at high Reynolds number. Finally, the three-dimensional flow cases

are assumed to be symmetric about the plane containing the curved duct centerline,

and symmetry conditions are imposed on this boundary.

Governing Equations and Differencing Procedures

The differencing procedures used are a straightforward adaptation of those used

by Briley and McDonald [14) in Cartesian coordinates for flow in a straight duct.

The compressible time-dependent Navier-Stokes equations are written in orthogonal

coordinates in the form given by Hughes and Gaylord [17]. The first-derivative

flux terms are written in conservation form, and for economy the stagnation enthalpy

is assumed constant. The definition of stagnation enthalpy and the equation of state

for a perfect gas can then be used to eliminate pressure and temperature as dependent

variables, and solution of the energy equation is unnecessary. The continuity and

7



three momentum equations are solved with density and the three velocity components

aligned with the coordinates as dependent variables. Three-point central differences

were used for spatial derivatives, and second-order artificial dissipation terms are

added as in [14] to prevent spatial oscillations at high cell Reynolds number. This

treatment lowers the formal accuracy to first order but does not seriously degrade

accuracy in representing viscous terms in thin shear layers. Analytical coordinate

transformations due to Roberts [18] were used to redistribute grid points and thus

improve resolution in shear layers. Derivatives of geometric data were determined

analytically for use in the difference equations.

The turbulence model used is a one-equation model recently explored by Shamroth

and Gibeling [15]. This model requires solution of a single equation governing
2

turbulence kinetic energy q , in conjunction with an algebraically specified length
2

scale Z. The equation governing the balance of turbulence kinetic energy, q , in

curvilinear orthogonal coordinates was derived from the Cartesian tensor form of this

equation given by Launder and Spalding [19]. For the present application, a very

simple three-layer length scale was constructed with the outer or wake scale determined

by a one-dimensional estimate of the growth of this wake length scale from its value

on inlet. This growth rate was essentially obtained from the Von Karman momentum

integral equation assuming the wake length scale would grow roughly as the boundary

layer thickness. Near the nearest wall the length scale was assumed to vary in

accordance with Von Karman's linear relationship Z=Ky. In the viscous sublayer the

length scale was damped by viscous effects according to Van Driest's formulation.

Finally, the turbulent effective viscosity vt was obtained from the Prandtl-Kolomogorov
consitutve rlatinshi* ~2 1/2

constitutive relationship t a 2,(q )i/2 The turbulent viscosity was then supposed

isotropic and the stress tensor in the ensemble averaged equations determined by

adding the turbulent viscosity to the kinetic viscosity. The turbulent kinetic energy

near the wall was damped out according to the suggestion of Shamroth and Gibeling (Ref. 15).

Split LBI Algorithm

The numerical algorithm used is the consistently-split "linearized b1l ,'k implicit"

(LBI) scheme developed by Briley and McDonald [14, 15] for systematic use in solving

systems of nonlinear parabolic-hyperbolic partial differential equations (PDE's).

To illustrate the algorithm, let

( n+l- n)/t = $D(,n+ l) + (1-a) D (,n) (2)
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approximate a system of time-dependent nonlinear PDE's (centered about tn+$At) for

the vector * of dependent variables, where D is a multidimensional vector spatial
differential operator, and t is a discretized time variable such that At=tn+ltn.

A local time linearization (Taylor expansion about in) is introduced, and this serves

to define a linear differential operator L such that

D ( n+l D (,n) + Ln (,n+l_,n) + 0 (At2 (3)

Eq. (2) can thus be written as the linear system

(I - OL n ) (,n+l_ n) AtD (,n) (4)

without lowering the formal accuracy.

The multidimensional operator L is divided into three "one-dimensional" sub-operators

L=LI+L 2+L3 (associated here with the three coordinate directions), and Eq. (4) is

split as in the scalar development of Douglas & Gunn [201 and is written as

n n n
(I - OAtL ) AtD (5a)

(I - OAtL 2
n) 4* n * n (5b)

(I - OAtL 3n) (***_ n) **_0n (5c)

n+l O***(At 3  (5d)

If spatial derivatives appearing in L are replaced by three-point difference formulas,

then each step in Eqs. (5a-c) can be solved by a block-tridiagonal "inversion".

Eliminating the intermediate steps in Eqs. (5a-d) results in

(I - BAtLIn) (I - BAtL2n) (I - BAtLn) 4n+ln) AtD(On) (6)

which approximates Eq. (4) to order At3 . Complete derivations are given by the

authors in [14, 15]. It is noted that Warming and Beam [21] have suggested an

alternate derivation for this and other related algorithms, based on the approximate

factorization approach of Yanenko and D'Yakonov [221. Their derivation is equivalent

up to Eq. (4) and proceeds immediately to Eq. (6) by observing that Eq. (6) is a

"delta form" approximate factorization of Eq. (4). Eq. (6) is then solved by intro-

ducing intermediate quantities (0 -n ) and solving Eqs. (5a-c).

9



COMPUTED RESULTS

Extensive calculations were made for the flow geometry in which detailed measure-

ments were obtained by Taylor, Whitelaw, and Yianneskis [9]. This geometry is shown

in Fig. 1 and consists of a square duct with a 90 degree circular-arc-bend and with

straight sections both upstream and downstream of the bend. The ratio of bend

radius to duct width is 2.3. The measurements were taken for Reynolds numbers based

on mean velocity and duct width of 790 (laminar flow) and 40,000 (turbulent flow).

In each case, moderately thin shear layers (20-30% of duct width) were present at the

start of. the bend. Both of these measured flows were computed. In addition the

corresponding two-dimensional channel flows having the same curvature, Reynolds

number and shear layer thickness were computed for comparison with the three-4

dimensional duct flow solutions.

Mesh Refinement and Other Validation Tests '
Test calculations were first performed for the two-dimensional channel flows

to establish grid independence and to verify the treatment of inflow/outflow conditions.

The results are shown in Figs. 3-5. In Fig. 3, axial velocity profiles at the 60*

location are shown for both laminar and turbulent flow and for three radial grid

densities. With the 26 x 28 grid, the mesh spacing (in channel widths) adjacent

to the wall is 0.0026 (turbulent) and 0.0087 (laminar). The results in Fig. 3 indicate

that 26 radial grid points are sufficient to resolve this flow. In Fig. 4, the wall

pressure coefficient c is shown for both laminar and turbulent flow and for two
p

axial grid densities. Here and elsewhere in this report, the axial coordinate is

given in degrees of turning within the bend and in duct widths upstream or downstream

of the bend. The results in Fig. 4 are not sensitive to the axial grid used. Note

that at the inflow boundary, a transverse pressure gradient is permitted by the imposed

inflow boundary conditions and does occur in Fig. 4. The static pressure is assumed

constant at the downstream outflow boundary. In Fig. 5, the effect of extending the

straight segments to a length of 3.5 channel widths both upstream and downstream of

the bend is shown. Although the extensions had no observable effect on the turbulent

flow results, there is a noticeable effect near the 900 location for the laminar flow.

This sensitivity of the laminar flow can be explained by the occurrence of a very

small flow separation on the inner wall in this region. Evidently, although the

solutions are insensitive to the axial grid, the downstream boundary is apparently

10



located too close to this flaw separation unless extensions are added. This flow

separation did not occur in the three-dimensional square duct analog of this flow,

however, and the extensions were not included in these latter calculations.

On balance, it is concluded that a 26 x 28 grid, distributed to provide local

resolution for the near-wall region, was sufficient to achieve grid independence for

the two-dimensional channel cases. This same grid was used for the three-dimensional

duct calculations, and the mesh distribution for the third coordinate was chosen with

the two-dimensional results as a guide. Taking advantage of symmetry about the plane

midway between the endwalls, a 26 x 28 x 13 grid was used, with mesh spacing adjacent

to the endwall of 0.0028 (turbulent) and 0.0091 (laminar) duct widths. Since the two-

and three-dimensional flows have a different structure, the resulting grid does not

guarantee accuracy in three dimensions. Nevertheless, knowledge of the two-dimensional

accuracy is very useful in evaluating the three-dimensional results, for which

extensive~ mesh refinement results were not feasible.

Finally, it is necessary to establish and document both the degree and rate of

convergence obtained in the computed solutions. The behavior of maximum change in

* computed streamwise velocity with nondimensional time is shown in Fig. 6 for the

two-dimensional turbulent channel flow. These results are typical of those obtained

in both two- and three-dimensions and for both laminar and turbulent flow. Also

shown in Fig. 6 is the time step number. Here, the particle residence time of 6.75

represents the nondimensional time required for a particle travelling with the

reference (mean) velocity to traverse the duct centerline (6.75 duct widths) from

inflow to outflow. In this calculation, the initial time step was increased gradually

from 0.02 to 0.5 in the first 15 steps, held constant at 0.5 for the next 15 steps,

and thereafter a sequence of 5 time steps in equal logarithmic increments between

0.01 and 0.5 was used cyclically. The normalized maximum increment in velocity shown

in Fig. 6 is shown only for the maximum time step of 0.5. It should be emphasized

that Fig. 6 would not be meaningful if the increment were not taken at a large time

step, since the temporal increment can be made arbitrarily small by taking a small

time step. With 10 -4as the criterion, convergence to the steady state was usually

obtained at around 80 time steps in both two- and three-dimensional flow. Residuals

in the governing equations were also examined at convergence and noted to be small in

comparison to the other terms in the governing equations. As a final observation,

with 104 as the criterion, the plotted results exhibited little or no discernable

change with further iteration. The behavior observed in Fig. 6 does represent rapid

convergence for a problem of this complexity, and this is attributed in part to the

use of an implicit algorithm (including boundary conditions) and in part to the
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selection of inflow/outflow boundary conditions. The specification of total pressure

at inflow and static pressure at outflow allows pressure waves to be transmitted

through the inflow boundary during the transient process, and this avoids the

instability or slow convergence often attributed to reflection of pressure waves and

an inflow boundary with fixed velocity and density.

Three-Dimensional Curved Duct and Pipe Flows

Axial velocity profiles for turbulent flow in both the two-dimensional channel

and in the symmetry plane x3=0 of the three-dimensional duct are shown at selected

locations in Fig. 7. Also shown are the duct flow measurements of Taylor, Whitelaw &

Yianneskis [9]1. The two-dimensional turbulent channel flow was not compared with

experimental measurements, although as mentioned they were shown to be essentially

grid independent. The computed flow structure for the channel flow consists of an

inviscid core flow with acceleration near the inner wall of the bend, and with shear-

layer velocity profiles characteristic of turbulent f low. For comparison, also shown

in Fig. 7 are velocity profiles in the symmetry plane for the three-dimensional duct

flow. Here, there is evidence of considerable flow distortion as a result of secondary

flow, which is directed toward the inner wall near the endwalls (x 3 = + 0.5) and toward

the outer wall near the symmetry plane (x3 = 0). Although the axial velocity in the

symmetry plane initially accelerates near the inner wall up to the 300 location

(duplicating the channel flow behavior), beyond this point the peak velocity shifts

toward the outer wall. This pattern is also present in the data of Taylor, Whitelaw and

Yianneskis [91, and the level of agreement shown in Fig. 7 is generally good except

near the inner wall near the end of the bend. Radial velocity profiles at the

77.5 degree location are shown in Fig. 8 and display a very strong secondary flow near

the endwall with peak velocity up to 40% of the mean axial velocity, located very near

the endwall surface. Near the symmetry plane, the radial velocity is of order 20% of

the mean axial velocity and is directed toward the outer wall. The computed radial

velocity is in very good agreement with the measurements except in the region near

the symmetry plane and inner wall. On balance, the level of agreement between predic-

tion and experiment is good; the discrepancy may be due to the turbulence model, but

other factors such as grid resolution may still be present. In fact, for a three-

dimensional sublayer-resolved turbulent flow calculation with relatively coarse grid,

the level of agreement is perhaps better than might be anticipated.
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To explore further the accuracy of the predictions, laminar flow in the sam

geometry was also considered. Computed results for laminar axial and radial velocity

profiles corresponding to those given for turbulent flow are shown in Figs. 9 and 10.

The two-dimensional laminar flow in Fig. 9 resembles the corresponding turbulent flow

in that the flow accelerates near the inner wall of the bend. The velocity profiles

are characteristic of laminar flow, however, and since the growth rate of laminar shear

layers is greater than that of turbulent flow, there is less evidence of an inviscid

core region in the downstream profiles. In addition, laminar flow is less resistant

to separation in an adverse pressure gradient, and there is a very small flow separa-

tion at the inner wall just downstream of the +0.25 location (not actually shown in

Fig. 9a, but also mentioned earlier in the discussion of Fig. 5). The three-dimensional

laminar duct flow profiles in Fig. 9b display even more distortion downstream due to

secondary flow than the turbulent case in Fig. lb. Although very good qualitative

agreement with the Taylor, et al measurements is obtained, there is quantitative dis-

agreement, particularly near the 300 location. The radial velocity profiles at 77-l/2*

are shown in Fig. 10, and although qualitative agreement is obtained, there is quanti-

tative disagreement similar to that observed in Fig. 8 for turbulent flow but of

greater extent. Since the turbulence model has been removed as a factor in the

laminar flow calculations, and since there is no reason to suspect the experimental

data, the source of disagreement between prediction and experiment is believed to be

mesh related. The two-dimensional mesh refinement tests appear to have been inadequate

as a guide for the more complicated and extensive three-iesoa flwsrcue

One additional set of experimental comparisons shown in Figs. 11 and 12 provides

further clarification of these flow predictions. These two figures show the axial

development along the duct centerline of the axial and radial velocity components

* for each of the four solutions (2D/3D and laminar/turbulent). In each of the two-

dimensional channel flows, the axial velocity (Fig. 11) undergoes a mild streamwise

acceleration due mainly to blockage caused by shear layer growth, and this acceleration

is larger in the laminar flow because of the higher growth rate of laminar flow at

* these respective Reynolds numbers. In the three-dimensional duct flows, the initial

(inlet) velocity is higher than the corresponding channel flow because the endwall

shear layers of the duct flow (not present in the channel flow) require higher

blockage to give the same mean flowrate. The subsequent downstream decreases in

axial velocity for the duct flows are a direct consequence of the radial secondary

flow, which convects low velocity fluid toward the ceaiterline. This same behavior is

also present in the experimental measurements, although the distortion due to

13



77secondary flow is less severe in the calculation than that observed experimentally.

In Fig. 12, the corresponding radial velocities are shown with a sign convention

such that negative velocity denotes flow toward the inner wall of the bend. In the

two-dimensional channel geometry, the behavior is very similar for both laminar and

turbulent flow. There is radial flow toward the inner wall near the start of the

bend (0*) and toward the outer wall near the bend exit (900). In the three-dimensioanl

duct geometry, the flow is primarily radially outward within the bend, and the radial

flow is significantly stronger in the laminar case, as is consistent with the develop-

ment of the axial velocity in Fig. 11. This same flow behavior is evident in the

experimental measurements, and although the peak radial velocity is underpredicted

in the laminar case, the agreement with experiment is remarkably good in the turbulent

case. The stronger secondary flows observed in the laminar case are believed to be

the result of the different axial velocity distributions entering the bend. The

laminar velocity distribution contains larger transverse (radial) vorticity than the

turbulent case except in the viscous dominated region near the walls, and based on

secondary flow theory, this should lead to stronger secondary flows. The laminar

case thus proved to be a more difficult prediction than the turbulent case.

Finally, total pressure contours computed for turbulent flow in a mildly curved

circular pipe are compared with the experimental measurements of Rowe [10] in Fig. 9.

Shown are contours of total pressure difference (p 1hr 2stoar 'r Prur werPt i oa
pressure and pr 2 r' and ur are reference values of static pressure, density, and

velocity, respectively, taken as their values at the pipe centerline at 00. The

total pressure contours are a sensitive indicator of the distortion which occurs as a

result of both viscous losses and secondary flow. In general there is good qualita-

tive agreement between prediction and measurement. Again, the quantitative disagree-

ment which is present is believed to be mesh-related. A 30 x 19 x 15 grid was used

for the axial, circumferential and radial directions, respectively. The minimum

radial mesh increment at the pipe wall is 0.000765 diameters, and the maximum radial

mesh increment at the centerline is 0.12 diameters. This high degree of mesh

nonuniformity was needed to provide viscous sublayer resolution at the Reynolds number

(Rea 2.36 x 10 5 of this case; the use of only 15 radial grid points under these

circumstances may be inadequate.
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SUIMtARY AND CONCLUSIONS

A solution methodology is described for treatment of flow in curved ducts and

pipes, and it is demonstrated that rapid convergence (~80 noniterative time-steps)

can be obtained for three-dimensional turbulent flows, with sublayer resoltuion.

A series of solutions for both laminar and turbulent flow and for both two and

three-dimensional geometries of the same curvature are presented. The accuracy of

these solutions is explored by mesh refinement and by comparison with experiment.

In sunmmary, good qualitative and reasonable quantitative agreement between

* solution and experiment was obtained. Collectively, this sequence of results serves

to clarify the physical structure of these flows and hence how grid selection procedures

might be adjusted to improve the numerical accuracy and experimental agreement. For a

three-dimensional flow of considerable complexity, the relatively good agreement with

experiment obtained for the turbulent flow case despite a coarse grid must be regarded

as encouraging. These results seem to warrant further study to clarify the sources or

* error present and also to perform calculations for additional geometric configurations

and flow conditions.
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